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Intfroduction

ntegral equations are widely applied in multiple fields, but their analytical solutions

are often difficult to obtain and numerical methods are needed. Regarding the

numerical solutions of the second Kkind of Fredholm integral equations, the existing
research covers various techniques, such as the least squares support vector machine,
Chebyshev neural network, BP neural network, Simpson and Gauss quadrature formulas,
exponential transformation cosine expansion, adaptive wavelet neural network, colloca-
tion method, particle swarm algorithm, power series approximation, mean projection
algorithm, Nystrom method and spline Gaussian rule, etc. However, these methods have-
their own advantages and disadvantages in terms of solution accuracy and computational
complexity.
Based on the previous studies, this paper innovatively adopts the Sparrow Search Algor-
ithm to solve the second Kind of Fredholm integral equations. The specific steps include:
Selecting the power series as the approximate function, transforming the integral equat-
ion into an optimization problem,and then usingthe SparrowSearch Algorithnto find
the optimal coefficients of the power series. Through comparison with the algorithms in
the existing literature, the results of numerical examples show that the method proposed
in this paper exhibits higher superiority in terms of solution accuracy. This research not
only enriches the numerical solutions of Fredholm integral equations but also provides
new ideas and technical means for solving similar problems.
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pson's rule 1s used to approximate the definite
integral in equation (1). The integration interval
‘a,b] 1s divided 1into an even number 2m of subin-
tervals with step size ¢-ao/» , resulting in n+1

3. Numerical examples and analysis

To verity the effectiveness of the proposed

nodes. method 1n this paper, all instances were run on

a PC with an Intel(R) Core(TM) 17-9750H
2. SSAsolves the second Fredholm integral CPU, 2.60GHZ, and 8GB of memory using
equation Matlab R2016a. The parameters were set as

The Sparrow Search Algorithm (SSA)isanew  follows: population size of 50, maximum
type of swarm intelligence algorithm proposed  number of iterations of 1000, PD=0.2, ST=0.8,
in 2020, inspired by the collective intelligence, ~SD=0.2, power series , and the power series
foraging, and anti-predator behavior of sparrows. ~ coefficient domain range of [-30,30]. The
In simulation experiments, virtual sparrows are ~ comparison of experimental results with exis-
used to search for food, and the location of each ~ ting literature 1s shown in Tables 1-7, and the
sparrow is represented by the equation (2) matrix. ~ fitting degree and relative (absolute) error
Where P represents the number of sparrows, between the numerical solution and the exact
and d represents the dimension of the variables. ~ solution are shown in Figures 1-14.

The fitness values of all sparrows can be repre-
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In this context, each row in Fx represents the
fitness value of an individual. In SSA, the disc—
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Discoverers are responsible for searching for
food and guiding the movement of the entire |
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Conclusion

In this paper, we have studied the numerical solution of second-kind linear and nonlinear
Fredholm integral equations using the Sparrow Search Algorithm (SSA). This method
first takes the power series as the approximate analytic expression of the unknown fun-
ction, then converts the system of equations into an optimization problem, and finally
uses the SSA to solve for the optimal power series coefficients. All experimental results
demonstrate the feasibility, reliability, and superiority of the proposed method, providing
anew approach for the numerical solution of second-kind Fredholm integral equations.
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