Paper ID: CS859 2024 International Conference on Applied Mathematics, Modeling and Computer Simulation (AMMCS 2024)

Proof of a Conjecture on the Minimum ABS Index of Bicyclic Graphs

Yuehan WU^a, Xiuliang QIU^b, Chengxi HONG^b, and Wenshui LIN^{c,*}

^a College of Computer and Cyber Security, Fujian Normal University, Fuzhou, China
^b Chengyi College, Jimei University, Xiamen, China
^c School of Informatics, Xiamen University, Xiamen, China
^{*} Corresponding author's email: wslin@xmu.edu.cn

Supported by the National Natural Science Foundation of China (Grant NO. 12271182).

Introduction

• The atom-bond sum-connectivity (ABS) index of a connected graph G = (V, E) is defined as

$$ABS(G) = \sum_{v_i v_j \in E} \sqrt{\frac{d_i + d_j - 2}{d_i + d_j}},$$

where $V = \{v_1, v_2, \dots, v_n\}$, $d_i = d(v_i)$ is the degree of vertex v_i .

- The predictive applicability of the ABS index is comparable to those of some famous indices, such as the Randić index, sum-connectivity index, and atom-bond connectivity index.
- The characterization of extremal graphs among given graph class attracts attentions.
- Most known extremal results can be found in the survey [1].

Research objectives

Let $m_{i,j} = |\{uv \in E \mid d(u) = i, d(v) = j\}|, 1 \le i \le j \le n-1.$

Let \mathcal{B}_n be the set of bicyclic graphs of order n, and $\mathcal{B}_n^* = \{G \in \mathcal{B}_n \mid m_{2,2} = n - 4, m_{2,3} = 4, m_{3,3} = 1\}$.

Define $f(x, y) = \sqrt{(x + y - 2)/(x + y)}$, $x, y \ge 1$.

• The chemical bicyclic graphs with minimum ABS index were characterized recently in [2]. Lemma 1. If G is a chemical bicyclic graph of order $n \ge 6$, then

 $ABS(G) \ge f(3,3) + 4f(2,3) + (n-4)f(2,2)$, with equality iff $G \in \mathcal{B}_n^*$.

• Lemma 1. was conjectured to be also true for general bicyclic graphs in [3]. We confirm this conjecture. That is, we will prove the following result.

Theorem 1. If G is a (chemical) bicyclic graph of order $n \ge 4$, then

 $ABS(G) \ge f(3,3) + 4f(2,3) + (n-4)f(2,2)$, with equality iff $G \in \mathcal{B}_n^*$.

Preliminaries

BFS ordering;

Case 2. $d_1 \ge 5, d_2 = 2$, and $d_n = 1$. Let $B^*(\pi)$ be the graph obtained from B_2 by attaching $d_1 - 4$ pendent paths of almost equal lengths at vertex v_1 ;

Case 3.
$$d_1 = 4$$
 and $d_2 = d_3 = \dots = d_n = 2$. Let $B^*(\pi) = B_3$;

Case 4.
$$d_1 = d_2 = 3$$
 and $d_3 = d_4 = \dots = d_n = 2$. Let $B^*(\pi) = B_4$.

From the Theorem 2.2 in [3], we easily have the following result.

Theorem 2. If $\pi = (d_1, d_2, ..., d_n)$ is the degree sequence of a bicyclic graph, then $B^*(\pi)$ has minimum ABS index in \mathcal{B}_n .

> A graph transformation

Denote by G(k,l) the graph obtained from a non-trivial connected graph G by attaching two pendent paths $uu_1u_2\cdots u_k$ and $uv_1v_2\cdots v_l$ at vertex $u \in V(G)$, $k \ge l \ge 0$. We prove the following result.

```
Theorem 3. If k \ge l \ge 0 and k \ge 1, then
```

 $ABS(G(k+l,0)) \le ABS(G(k,l)) \le ABS(G(k+l-1,1)),$

with the two equalities iff l = 0 and l = 1, respectively.

Main Result

Let $\Phi(n) = f(3,3) + 4f(2,3) + (n-4)f(2,2) \approx n/\sqrt{2} + 1.08646$.

Proof of Theorem 1. For n = 4, 5, the conclusion can be easily confirmed, because $|\mathcal{B}_4| = 1$ and $|\mathcal{B}_5| = 3$.

Suppose G is a bicyclic graph of order $n \ge 6$ with minimum ABS index, and $\pi = (d_1, d_2, ..., d_n)$ its nonincreasing degree sequence. From Theorem 2, $ABS(G) = ABS(B^*(\pi))$. Recall that π should be one of the following four cases.

Case 1. $d_1 \ge d_2 \ge 3$ and $d_n = 1$. Then $B^*(\pi)$ is obtained from B_1 by attaching a tree T_i at vertex v_i , i = 1, 2, 3, 4. From Theorem 3, each T_i should be a pendent path, say of length $l_i \ge 0$. Denote $B^*(\pi)$ by $B(l_1, l_2; l_3, l_4)$. By symmetry, assume $l_1 \ge l_2$ and $l_3 \ge l_4$. Since $ABS(G) = ABS(B^*(\pi))$ is minimum, from the monotonicity of f(x, y), it is easily shown that $ABS(G) = ABS(B(0, 0; n - 4, 0)) \approx n/\sqrt{2} + 1.10799 > \Phi(n)$.

Case 2. $d_1 \ge 5, d_2 = 2$, and $d_n = 1$. From Theorem 3, $B^*(\pi)$ is the graph obtained from B_2 by attaching a pendent path of length n-5 at v_1 . If n=6, $ABS(G) \approx 5.61133 > \Phi(6) \approx 5.3291$. Otherwise, if $n \ge 7$, then

 $ABS(G) \approx n / \sqrt{2 + 1.26759} > \Phi(n).$

Case 3. $d_1 = 4$ and $d_2 = d_3 = \dots = d_n = 2$. Then $B^*(\pi) = B_3$, and $ABS(G) \approx n / \sqrt{2} + 1.14467 > \Phi(n)$.

Case 4. $d_1 = d_2 = 3$ and $d_3 = d_4 = \dots = d_n = 2$. By counting the edges of G that are incident to vertices of degree i = 2, 3, we have $2m_{2,2} + m_{2,3} = 2n - 4$ and $m_{2,3} + 2m_{3,3} = 6$. Moreover, $m_{3,3} = 0, 1$, because either $v_1v_2 \notin E$ or $v_1v_2 \in E$. If $m_{3,3} = 0$, then $m_{2,2} = n - 5$ and $m_{2,3} = 6$. Hence $ABS(G) \approx n/\sqrt{2} + 1.11205 > \Phi(n)$. Otherwise, if $m_{3,3} = 1$, then $G \in \mathcal{B}_n^*$ and $ABS(G) = \Phi(n)$.

Combining Cases 1-4, it holds that $ABS(G) = \Phi(n)$, with equality iff $G \in \mathcal{B}_n^*$.

References

Ali A, Gutman I, Furtula B, et al. Extremal results and bounds for atom-bond sum-connectivity index. MATCH Commun. Math. Comput. Chem. 2024; 92: 271–314.

^[2] Aarthi K, Elumalai S, Balachandran S, Mondal S. Extremal values of the atom-bond sum-connectivity index in bicyclic graphs. J. Appl. Math. Comput. 2023; 69: 4269–4285.

^[3] Liu M, Xu K, Zhang XD. Extremal graphs for vertex-degree-based invariants with given degree sequences. Discrete Appl. Math. 2019; 255: 267–277.