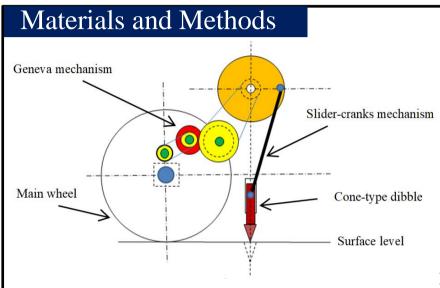
Development and Optimization of a Tractor-Mounted Boring Mechanism for Efficient Fertilizer Application in Rubber Plantations

Mongkol KATHAPANT^a, Yongyuth SENGDANG^b, Khongdet PHASINAM^c,* and Payungsak JUNYUSEN^a


^aInstitute of Engineering, Suranaree University of Technology, Nakhon Ratchasima, Thailand ^bFaculty of Engineering and Technology, Rajamangala University of Technology Isan, Nakhon Ratchasima, Thailand ^cFaculty of Food and Agricultural Technology, Pibulsongkram Rajabhat University, Phitsanulok, Thailand *Corresponding author's email: phasinam@psru.ac.th

Introduction

The rubber tree (*Hevea brasiliensis* Müll. Arg.) is a key tropical economic crop, primarily grown in ASEAN countries, which accounted for 77.78% of global rubber plantations in 2017. Thailand, Indonesia, and Vietnam led global natural rubber production in 2020, contributing 65.79% of the total output. Fertilization in rubber plantations is typically manual, requiring significant labor and precision to avoid root damage and nutrient loss. Despite existing mechanized solutions, such as tractor-mounted spreaders, challenges remain, including inefficiencies in depth control and equipment wear. This study aims to address these issues by designing and testing a drilling mechanism for more efficient fertilizer application in rubber plantations.

Research objectives

The goal of this research is to develop, fabricate, and test a boring mechanism for a tractor that will be used to fertilize rubber plants.

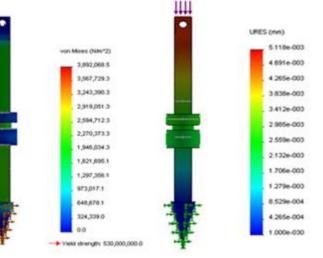
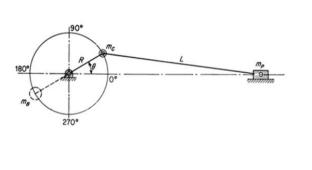



Fig. 1: The boring mechanism for fertilizing the rubber plants.

Fig. 3: The distribution of the von Mises stress and the displacements of the cone-type dibble.

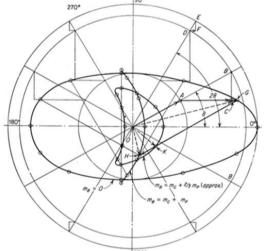


Fig. 2: The forces at the cone type dibble at the positions of the slider-crank angles.

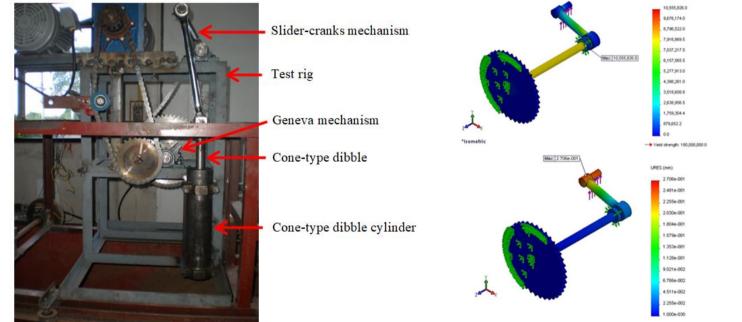


Fig. 5: The designed and fabricated boring mechanism.

Fig. 4: The distribution of the von Mises stress and the displacements of the slider-crank.

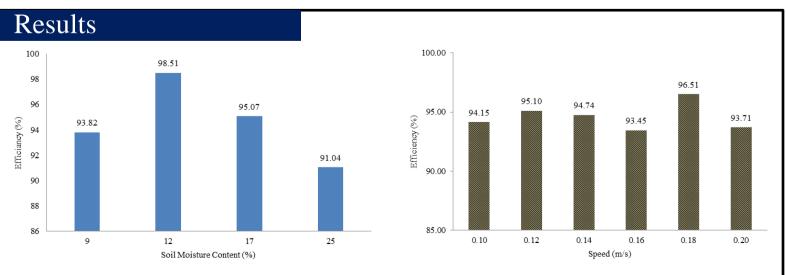


Fig. 6: Bar chart showing the relationship between total Fig. 7: Bar chart showing the relationship between total efficiency and soil moisture content. efficiency and speed.

Conclusion

This study aids in understanding and designing fertilizer drilling machines for fertilization in rubber gardens. The mechanism with slider-crank, Geneva mechanism, Cone type dibble. As per results, it has been found that the optimum speed has 0.18 m/s (80 rpm) given an efficiency of 96.51% with an appropriate soil moisture content of 12%. Holes were having a depth of about 7–10 cm with the spacing distance between the holes being 60 cm.

Acknowledgement

We express our thanks to the Suranaree University of Technology for their support and material fulfilment.