Simulation (AMMCS 2022)

Saturated Finite-Time Control for Uncertain Multiagent Systems with Uncertainties and Disturbances

Xiaowu YANG^a, Xiaoping FAN^b, Fei LONG^a, Ganrong LI^c

- ^a College of Artificial Intelligence and Electrical Engineering, Guizhou Institute of Technology, and Special Key Laboratory of Artificial Intelligence and Intelligent Control of Guizhou Province, Guiyang 550003, China
- ^b School of Information Technology and Management, Hunan University of Finance and Economics, Changsha, 410205 China
- ^c College of Engineering, Tongren Polytechnic College, Tongren, 554300 China

Corresponding Author, Xiaowu YANG, 1st, Caiguan Road, Yunyan District, Guiyang City, Guizhou Province; E-mail: 461829247@qq.com.

Supported by Special project of 2021 Academic New Seedling Cultivation and Innovation Exploration of Guizhou Institute of Technology under Grant GZLGXM -07, and National Natural Science Foundation of China under Grant 6186300, Science and Technology Planning Project of Guizhou Province under Grant 20191416.

Introduction

Multiple autonomous agents are utilized to carry out many complicated tasks in recent decades, such as surveillance and rescue, monitoring environments and object transportation, etc.

Research objectives

Control objective: with the above preparation in hand, the control objective in this paper is to construct adaptive control protocols for the follower agent such that the formation errors e_{xi} and e_{vi} for i = 1, 2, ..., n, are steered to zero, i.e., $e_{xi} = 0$ and $e_{vi} = 0$, in a finite time t_f in spite of structured uncertainties and unstructured external disturbances.

Controller

the resulting error dynamics of multiagent systems is

$$\dot{e}_{x} = e_{v}$$

$$\dot{e}_{v} = g(p, v)u + \theta^{T} \varphi(p, v) + w(t)$$

Theorem: Consider a group of multiagent systems, the control objective is achieved, i.e., the specified formation is achieved in finite time under the action of by the *i*th follower.

$$u_{i} = -\frac{1}{g(p,\upsilon)}(ce_{\upsilon} + sat_{\delta}(K_{1}s(p,\upsilon))$$
$$+ sat_{\delta}(|K_{1}s(p,\upsilon)|^{\frac{1}{2}})\operatorname{sgn}(K_{1}s(p,\upsilon))$$

Results

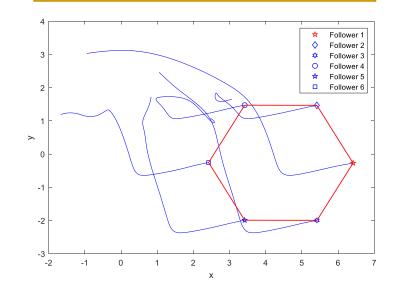


Fig. 1 The desired formation.

Conclusion

A boundary layer for the saturation-like function is properly chosen and its corresponding open set is obtained by carrying out the simulation, and the switching condition on the proposed controller is derived.

M. -L. Chiang, Y. -W. Chen, C. -S. Chen and S. -H. Tsai, "Distributed Formation Control of Multiagent Systems With Specified Order," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 52, no. 1, pp. 301-310, Jan. 2022.